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P R E F A C E

This volume contains some reviews and original research contributions,
which are related to the 7th Mathematical Physics Meeting: Sum-
mer School and Conference on Modern Mathematical Physics,
held in the Institute of Physics, Belgrade (Serbia), September 9–19, 2012
(http://www.mphys7.ipb.ac.rs). The programme of this meeting was mainly
oriented towards some recent developments in gravity and cosmology, string
and quantum field theory, and some relevant mathematical methods. We
hope that articles presented here will be valuable literature not only for the
participants of this meeting but also for many other PhD students and re-
searchers in modern mathematical and theoretical physics. We are grateful
to all authors for writing their contributions for these proceedings.

The previous six meetings in this series of summer schools and confer-
ences on modern mathematical physics were also held in Serbia: Sokobanja,
13–25 August 2001; Kopaonik, 1–12 September 2002; Zlatibor, 20–31 Au-
gust 2004; Belgrade, 3–14 September 2006; Belgrade, 6–17 July 2008; and
Belgrade, 14–23 September 2010. The corresponding proceedings of all
these meetings were published by the Institute of Physics, Belgrade, and
are available in the printed form as well as online at the websites.

This seventh meeting was held in the Institute of Physics (Belgrade),
which is at the nice bank of river Danube. There was also a sightseeing
excursion by ship “Zlatno Srce” (Golden Heart) and another to TV tower
hill Avala. We hope that all attending this meeting will recall it as a useful
and pleasant event, and will wish to participate again in the future.

We wish to thank all lecturers and other speakers for their interesting
and valuable talks. We also thank all participants for their active partici-
pation. Financial support of our sponsors: Ministry of Education, Science
and Technological Development of the Republic of Serbia, Belgrade; The
Abdus Salam International Centre for Theoretical Physics, Trieste, Italy;
ICTP – SEENET–MTP grant RRJ-09 “Cosmology and Strings”, Nǐs,
Serbia; Project 174012 (Geometry, Education and Visualization with Ap-
plications), Belgrade; and Nova Škola, Belgrade, was very significant for
realization of this activity.
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Gravity, Nonlinear Gauge Fields and Charge

Confinement/Deconfinement ∗

Eduardo Guendelman and Alexander Kaganovich†

Physics Department, Ben Gurion University of the Negev

Beer Sheva, ISRAEL

Emil Nissimov and Svetlana Pacheva‡

Institute for Nuclear Research and Nuclear Energy

Bulgarian Academy of Sciences, Sofia, BULGARIA

Abstract

We discuss in some detail the properties of gravity (including f(R)-gravity) cou-
pled to non-standard nonlinear gauge field system containing a square root of the
usual Maxwell Lagrangian − f0

2

√
−F 2. The latter is known to produce in flat

spacetime a QCD-like confinement. Inclusion of gravity triggers various physi-
cally interesting effects: new mechanism for dynamical generation of cosmological
constant; non-standard black hole solutions with constant vacuum electric field
and with “hedge-hog”-type spacetime asymptotics, which are shown to obey the
first law of black hole thermodynamics; new “tubelike” solutions of Levi-Civita-
Bertotti-Robinson type; charge-”hiding” and charge-confining “thin-shell” worm-
hole solutions; dynamical effective gauge couplings and confinement-deconfinement
transition effect when coupled to quadratic R2-gravity.

1. Introduction

We consider gravity, including f(R)-gravity [1], coupled to non-standard
nonlinear gauge field system containing a square root of the ordinary Maxwell
Lagrangian −f0

2

√
−F 2. In flat spacetime the latter model has been shown

[2] to produce a QCD-like confinement.

We exhibit several interesting features of the above system (see also Refs.[3,
4]) :

∗ Work supported in part by Bulgarian National Science Foundation grant DO 02-257
† e-mail address: guendel@bgu.ac.il, alexk@bgu.ac.il
‡ e-mail address: nissimov@inrne.bas.bg, svetlana@inrne.bas.bg
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• New mechanism for dynamical generation of cosmological constant
due to nonlinear gauge field dynamics: Λeff = Λ0 + 2πf2

0 (Λ0 – bare
cosmological constant, may be absent at all).

• Non-standard black hole solutions of Reissner-Nordström-(anti-)de-
Sitter type containing a constant radial vacuum electric field (in addi-
tion to the Coulomb one), in particular, in electrically neutral black
holes of Schwarzschild-(anti-)de-Sitter type. It is shown that these
non-standard black holes obey the first law of black hole thermody-
namics.

• In case of vanishing effective cosmological constant Λeff (i.e., Λ0 <
0 , |Λ0| = 2πf2

0 ) the resulting Reissner-Nordström-type black hole,
apart from carrying an additional constant vacuum electric field, turns
out to be non-asymptotically flat – a feature resembling the gravita-
tional effect of a hedgehog [6].

• Appearance of confining-type effective potential in charged test particle
dynamics in the above black hole backgrounds.

• New “tubelike” solutions of Levi-Civita-Bertotti-Robinson [7] type,
i.e., with spacetime geometry of the form M2 × S2, where M2 is a
two-dimensional anti-de Sitter, Rindler or de Sitter space depending
on the relative strength of the electric field w.r.t. the coupling f0 of
the square-root gauge field term.

When in addition one or more lightlike branes are self-consistently coupled
to the above gravity/nonlinear-gauge-field system (as matter and charge
sources) they produce (“thin-shell”) wormhole solutions displaying two
novel physically interesting effects [4]:

• “Charge-hiding” effect - a genuinely charged matter source of grav-
ity and electromagnetism may appear electrically neutral to an exter-
nal observer – a phenomenon opposite to the famous Misner-Wheeler
“charge without charge” effect [5];

• Charge-confining “tubelike” wormhole with two “throats” occupied by
two oppositely charged lightlike branes – the whole electric flux is
confined within the finite-extent “middle universe” of generalized Levi-
Civita-Bertotti-Robinson type – no flux is escaping into the outer non-
compact “universes”.

Additional interesting features appear when we couple the “square-root”
confining nonlinear gauge field system to f(R)-gravity with f(R) = R+αR2

and a dilaton. Reformulating the model in the physical “Einstein” frame
we find (cf. second Ref.[3]):

• “Confinement-deconfinement” transition due to appearance of “flat”
region in the effective dilaton potential;

• The effective gauge couplings as well as the induced cosmological con-
stant become dynamical depending on the dilaton v.e.v. In particular,
a conventional Maxwell kinetic term for the gauge field is dynamically
generated even if absent in the original theory;
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• Regular black hole solution (no singularity at r = 0) with confining
vacuum electric field: the bulk spacetime consist of two regions –
an interior de Sitter and an exterior Reissner-Nordström-type (with
“hedgehog asymptotics”) glued together along their common horizon
occupied by a charged lightlike brane. The latter also dynamically de-
termines the non-zero cosmological constant in the interior de-Sitter
region. This result is analogous to the regular black hole solution in
the case of ordinary Einstein gravity presented in Ref.[8] and will be
discussed in more detail in a subsequent paper.

Concluding the introductory remarks, let us briefly mention the principal
motivation for studying non-standard gauge field models with

√
−F 2. G.

‘t Hooft has shown [9] that in any effective quantum gauge theory, which
is able to describe linear confinement phenomena, the energy density of
electrostatic field configurations should be a linear function of the elec-
tric displacement field in the infrared region (the latter appearing as an
“infrared counterterm”).

The simplest way to realize these ideas in flat spacetime was proposed in
Refs.[2]:

S =

∫
d4xL(F 2) , L(F 2) = −1

4
F 2 − f0

2

√
−F 2 , (1)

F 2 ≡ FµνF
µν , Fµν = ∂µAν − ∂νAµ ,

The square root of the Maxwell term naturally arises as a result of sponta-
neous breakdown of scale symmetry of the original scale-invariant Maxwell
action with f0 appearing as an integration constant responsible for the
latter spontaneous breakdown. For static field configurations the model

(1) yields an electric displacement field D⃗ = E⃗ − f0√
2

E⃗
|E⃗|

and the corre-

sponding energy density turns out to be 1
2E⃗

2 = 1
2 |D⃗|2 + f0√

2
|D⃗| + 1

4f
2
0 ,

so that it indeed contains a term linear w.r.t. |D⃗|. The model (1) pro-
duces, when coupled to quantized fermions, a confining effective potential
V (r) = −β

r +γr (Coulomb plus linear one with γ ∼ f0) which is of the form
of the well-known “Cornell” potential in the phenomenological description
of quarkonium systems in QCD [10].

2. Einstein Gravity Coupled to Confining Nonlinear Gauge
Field

The pertinent action is given by (R-scalar curvature; Λ0 - bare cosmological
constant, might be absent):

S =

∫
d4x

√
−G

[R− 2Λ0

16π
+ L(F 2)

]
, L(F 2) = −1

4
F 2 − f0

2

√
−F 2 ,(2)

F 2 ≡ FκλFµνG
κµGλν , Fµν = ∂µAν − ∂νAµ .
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Remark. One could start with the non-Abelian version of the gauge field
action in (2). Since we will be interested in static spherically symmetric
solutions, the non-Abelian gauge theory effectively reduces to an Abelian
one.

The corresponding equations of motion read accordingly – Einstein equa-
tions:

Rµν −
1

2
GµνR+ Λ0Gµν = 8πT (F )

µν , (3)

T (F )
µν =

(
1− f0√

−F 2

)
FµκFνλG

κλ − 1

4

(
F 2 + 2f0

√
−F 2

)
Gµν , (4)

and nonlinear gauge field equations:

∂ν

(√
−G

(
1− f0√

−F 2

)
FκλG

µκGνλ

)
= 0 . (5)

Important remark. Note the non-zero value of the trace of energy-
momentum tensor unlike ordinary Maxwell theory:

T (F ) ≡ T (F )
µν Gµν = −f0

√
−F 2 .

Solving Eqs.(3)–(5) we find new non-standard Reissner-Nordström-(anti-)
de-Sitter-type black holes depending on the sign of a dynamically generated
cosmological constant Λeff :

ds2 = −A(r)dt2 +
dr2

A(r)
+ r2(dθ2 + sin2 θdφ2) , (6)

A(r) = 1−
√
8π|Q|f0 −

2m

r
+

Q2

r2
− Λeff

3
r2 , Λeff = 2πf2

0 + Λ0 , (7)

with static spherically symmetric electric field containing apart from the
Coulomb term an additional constant “vacuum” piece:

F0r =
εF f0√

2
+

Q√
4π r2

, εF ≡ sign(F0r) = sign(Q) . (8)

The latter corresponds to a confining “Cornell”-type [10] potential A0 =

− εF f0√
2
r+ Q√

4π r
. When Λeff = 0, A(r) → 1−

√
8π|Q|f0 for r → ∞, i.e., the

black hole exhibits “hedgehog” [6] non-flat-spacetime asymptotics.

Furthermore, we find three distinct types of static solutions of “tube-
like” Levi-Civita-Bertotti-Robinson [7] type with spacetime geometry of
the form M2 × S2, where M2 is some 2-dimensional manifold ((anti-)de
Sitter (A)dS2, Rindler Rind2):

ds2 = −A(η)dt2 +
dη2

A(η)
+ r20(dθ

2 + sin2 θdφ2) , −∞ < η < ∞ , (9)

F0η = cF = const ,
1

r20
= 4πc2F + Λ0 (= const) . (10)
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(i) AdS2 × S2 with constant vacuum electric field |F0η| ≡ |E⃗| = |cF |:

A(η) = 4π

[
c2F −

√
2f0|cF | −

Λ0

4π

]
η2 (η − Poincare patch coordinate) ,

(11)

provided either |cF | > f0√
2

(
1 +

√
1 + Λ0

2πf2
0

)
for Λ0 ≥ −2πf2

0 or |cF | >√
1
4π |Λ0| for Λ0 < 0 , |Λ0| > 2πf2

0 .

(ii) Rind2 × S2 with constant vacuum electric field |F0η| = |cF |, where
Rind2 is the flat 2-dimensional Rindler spacetime with:

A(η) = η for 0 < η < ∞ or A(η) = −η for −∞ < η < 0 (12)

provided |cF | = f0√
2

(
1 +

√
1 + Λ0

2πf2
0

)
for Λ0 > −2πf2

0 .

(iii) dS2×S2 with weak const vacuum electric field |F0η| = |cF |, where dS2
is the 2-dimensional de Sitter space with:

A(η) = 1− 4π

[√
2f0|cF | − c2F +

Λ0

4π

]
) η2 , (13)

when |cF | < f0√
2

(
1 +

√
1 + Λ0

2πf2
0

)
for Λ0 > −2πf2

0 . Note that dS2 has two

horizons at η = ±η0 ≡ ±
[
4π

(√
2f0|cF | − c2F

)
+ Λ0

]− 1
2
.

3. Bulk Gravity/Nonlinear Gauge Field Coupled to Light-
like Brane Sources

In the following two Sections we will consider bulk Einstein/non-linear
gauge field system (2) self-consistently coupled to N ≥ 1 (distantly sepa-
rated) charged codimension-one lightlike p-brane (LL-brane) sources (here
p = 2).

World-volume LL-brane actions in a reparametrization-invariant Nambu-
Goto-type or in an equivalent Polyakov-type formulation were proposed in
Refs.[11]:

SLL[q] = −1

2

∫
dp+1σ Tb

p−1
2

0

√
−γ

[
γabḡab − b0(p− 1)

]
, (14)

ḡab ≡ ∂aX
µGµν∂bX

ν − 1

T 2
(∂au+ qAa)(∂bu+ qAb) , Aa ≡ ∂aX

µAµ . (15)

Here and below the following notations are used:
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• γab is the intrinsic world-volume Riemannian metric;
gab = ∂aX

µGµν(X)∂bX
ν is the induced metric on the world-volume,

which becomes singular on-shell (manifestation of the lightlike nature);
b0 is world-volume “cosmological constant”.

• Xµ(σ) are the p-brane embedding coordinates in the bulk D-dimensio-
nal spacetime with Riemannian metric Gµν(x) (µ, ν = 0, 1, . . . , D−1);

(σ) ≡
(
σ0 ≡ τ, σi

)
with i = 1, . . . , p ; ∂a ≡ ∂

∂σa .

• u is auxiliary world-volume scalar field defining the lightlike direction
of the induced metric;

• T is dynamical (variable) brane tension;

• q – the coupling to bulk spacetime gauge field Aµ is LL-brane surface
charge density.

The on-shell singularity of the induced metric gab , i.e., the lightlike prop-
erty, directly follows from the LL-brane equations of motion:

gab

(
ḡbc(∂cu+ qAc)

)
= 0 . (16)

Now, let us consider the full action of self-consistently coupled bulk Einste-
in/non-linear gauge field/LL-brane system (L(F 2) = −1

4F
2 − f0

2

√
−F 2):

S =

∫
d4x

√
−G

[R(G)− 2Λ0

16π
+ L(F 2)

]
+

N∑
k=1

SLL[q
(k)] , (17)

where the superscript (k) indicates the k-th LL-brane.

The corresponding equations of motion are as follows:

Rµν −
1

2
GµνR+ Λ0Gµν = 8π

[
T (F )
µν +

N∑
k=1

T (k)
µν

]
, (18)

∂ν

[√
−G

(
1− f0√

−F 2

)
FκλG

µκGνλ
]
+

N∑
k=1

jµ(k) = 0 . (19)

The energy-momentum tensor and the charge current density of k-th LL-
brane are straightforwardly derived from the pertinent LL-brane world-
volume action (14):

Tµν
(k) = −

∫
d3σ

δ(4)
(
x−X(k)(σ)

)
√
−G

T (k)
√

|ḡ(k)|ḡab(k)∂aX
µ
(k)∂bX

ν
(k) , (20)

jµ(k) = −q(k)
∫
d3σ δ(4)

(
x−X(k)(σ)

)√
|ḡ(k)|ḡab(k)∂aX

µ
(k)

∂bu
(k) + q(k)A(k)

b

T (k)
. (21)
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Solving Eqs.(18)–(19) with (20)–(21) we find “thin-shell” wormhole solu-
tions of static “spherically-symmetric” type (in Eddington-Finkelstein co-

ordinates dt = dv − dη
A(η) , F0η = Fvη):

ds2 = −A(η)dv2 + 2dvdη + C(η)hij(θ)dθ
idθj , Fvη = Fvη(η) , (22)

−∞ < η < ∞ A(η
(k)
0 ) = 0 for η

(1)
0 < . . . < η

(N)
0 . (23)

The derivation of these “thin-shell” wormhole solutions proceeds along the
following main steps:

(i) Take “vacuum” solutions of (18)–(19) (without delta-function LL-brane
terms) in each spacetime region (separate “universe”) given by (−∞ <

η < η
(1)
0 ), . . . , (η

(N)
0 < η < ∞) with common horizon(s) at η = η

(k)
0 (k =

1, . . . , N).

(ii) Each k-th LL-brane automatically locates itself on the horizon at η =

η
(k)
0 – intrinsic property of LL-brane dynamics [11].

(iii) Match discontinuities of the derivatives of the metric and the gauge

field strength across each horizon at η = η
(k)
0 using the explicit expressions

for the LL-brane stress-energy tensor and charge current density (20)–(21).

4. Charge “Hiding”and Charge Confining Wormholes

First we will construct “one-throat” wormhole solutions to (17) with the
charged LL-brane occupying the wormhole “throat”, which connects (i) a
non-compact “universe” with Reissner-Nordström-(anti)-de-Sitter-type ge-
ometry (where the cosmological constant is partially or entirely dynamically
generated) to (ii) a compactified (“tubelike”) “universe” of (generalized)
Levi-Civita-Bertotti-Robinson type with geometry AdS2×S2 or Rind2×S2.

These wormholes possess the novel property of hiding electric charge from
external observer in the non-compact “universe”. Namely, the whole elec-
tric flux produced by the charged LL-brane at the wormhole “throat” is
pushed into the “tubelike” “universe”. As a result, the non-compact “uni-
verse” becomes electrically neutral with Schwarzschild-(anti-)de-Sitter or
purely Schwarzschild geometry. Therefore, an external observer in the non-
compact “universe” detects a genuinely charged matter source (the charged
LL-brane) as electrically neutral.

The explicit form ds2 = −A(η)dv2+2dvdη+C(η)
(
dθ2 + sin2 θdφ2

)
for the

metric and the nonlinear gauge theory’s electric field Fvη(η) read:

• “Left universe” of Levi-Civita-Bertotti-Robinson (“tubelike”) type with
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geometry AdS2 × S2 for η < 0:

A(η) = 4π

(
c2F −

√
2f0|cF | −

Λ0

4π

)
η2 , C(η) ≡ r20 =

1

4πc2F + Λ0
, (24)

|Fvη| ≡ |E⃗| = |cF | >
f√
2

(
1 +

√
1 +

Λ0

2πf2
0

)
for Λ0 > −2πf2

0 ,

or |Fvη| ≡ |E⃗| = |cF | >
√

1

4π
|Λ0| for Λ0 < 0 , |Λ0| > 2πf2

0 .

• Non-compact “right universe” for η > 0 comprising the exterior re-
gion of Reissner-Nordström-de-Sitter-type black hole beyond the mid-
dle (Schwarzschild-type) horizon r0 when Λ0 > −2πf2

0 (in particu-
lar, when Λ0 = 0), or the exterior region of Reissner-Nordström-anti-
de-Sitter-type black hole beyond the outer (Schwarzschild-type) hori-
zon r0 in the case Λ0 < 0 and |Λ0| > 2πf2

0 , or the exterior region
of Reissner-Nordström-“hedgehog” black hole for |Λ0| = 2πf2

0 (note:
A(η) ≡ ARN−((A)dS)(r0 + η)):

A(η) = 1−
√
8π|Q|f0 −

2m

r0 + η
+

Q2

(r0 + η)2
− Λ0 + 2πf2

0

3
(r0 + η)2 ,

(25)

C(η) = (r0 + η)2 , |Fvη| ≡ |E⃗| = f0√
2
+

|Q|√
4π (r0 + η)2

.

The matching relations for the discontinuities of the metric and gauge
field components across the LL-brane world-volume occupying the worm-
hole “throat” (which are here derived self-consistently from a well-defined
world-volume Lagrangian action principle for the LL-brane) (14) determine
all parameters of the wormhole solutions as functions of q (the LL-brane

charge) and f0 (coupling constant of
√
−F 2):

Q = 0 , |cF | = |q|+ f0√
2
, (26)

as well as the allowed range for the “bare” cosmological constant:

− 4π
(
|q|+ f0√

2

)2
< Λ0 < 4π

(
q2 − f2

0

2

)
, (27)

The relations (26) (recall |Fvη| ≡ |E⃗| = |cF | in the “tubelike” “left uni-
verse”) have profound consequences:

(A) The non-compact “right universe” (25) becomes exterior region of elec-
trically neutral Schwarzschild-(anti-)de-Sitter or purely Schwarzschild black
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Figure 1: Shape of t = const and θ = π
2 slice of charge-“hiding” wormhole

geometry: the whole electric flux produced by the charged LL-brane at the
“throat” is expelled into the left infinitely long cylindric tube.

hole beyond the Schwarzschild horizon carrying a vacuum constant radial

electric field |Fvη| ≡ |E⃗| = f0√
2
.

(B) Recalling that the dielectric displacement field is D⃗ =
(
1 − f0√

2|E⃗|

)
E⃗,

we find from the second relation (26) that the whole flux produced by the
charged LL-brane flows only into the “tubelike” “left universe” (24) (since

D⃗ = 0 in the non-compact “right universe”). This is a novel property
of hiding electric charge through a wormhole connecting non-compact to a
“tubelike” universe from external observer in the non-compact “universe”.

The charge-“hiding” wormhole geometry is visualized on Fig.1 below.

Further, we find more interesting “two-throat” wormhole solution exhibit-
ing QCD-like charge confinement effect – obtained from a self-consistent
coupling of the gravity/nonlinear-gauge-field system with two identical op-
positely charged LL-branes (Eq.(17) with N = 2). The total “two-throat”
wormhole spacetime manifold is made of:

(i) “Left-most” non-compact “universe” comprising the exterior region of
Reissner-Nordström-de-Sitter-type black hole beyond the middle Schwarzschild-
type horizon r0 for the “radial-like” η-coordinate interval:

−∞ < η < −η0 ≡ −
[
4π

(√
2f0|cF | − c2F

)
+ Λ0

]− 1
2
, (28)
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where:

A(η) = ARNdS(r0 − η0 − η) = 1−
√
8π|Q|f0 −

2m

r0 − η0 − η

+
Q2

(r0 − η0 − η)2
− Λ0 + 2πf2

0

3
(r0 − η0 − η)2 , (29)

C(η) = (r0 − η0 − η)2 , |Fvη(η)| ≡ |E⃗| = f0√
2
+

|Q|√
4π (r0 − η0 − η)2

.

(ii) “Middle” “tube-like” “universe” of Levi-Civita-Bertotti-Robinson type
with geometry dS2 × S2 comprising the finite extent (w.r.t. η-coordinate)
region between the two horizons of dS2 at η = ±η0:

− η0 < η < η0 ≡
[
4π

(√
2f0|cF | − c2F

)
+ Λ0

]− 1
2
, (30)

where the metric coefficients and electric field are:

A(η) = 1−
[
4π

(√
2f0|cF | − c2F

)
+ Λ0

]
η2 , A(±η0) = 0 ,

(31)

C(η) = r20 =
1

4πc2F + Λ0
, |Fvη| ≡ |E⃗| = |cF | <

f√
2

(
1 +

√
1 +

Λ

2πf2
0

)
,

with Λ0 > −2πf2
0 ;

(iii) “Right-most” non-compact “universe” comprising the exterior region of
Reissner-Nordström-de-Sitter-type black hole beyond the middle Schwarz-
schild-type horizon r0 for the “radial-like” η-coordinate interval η0 < η <
∞ (η0 as in (30)), where:

A(η) = ARNdS(r0 + η − η0) = 1−
√
8π|Q|f0 −

2m

r0 + η − η0

+
Q2

(r0 + η − η0)2
− Λ0 + 2πf2

0

3
(r0 + η − η0)

2 , (32)

C(η) = (r0 + η − η0)
2 , |Fvη(η)| ≡ |E⃗| = f0√

2
+

|Q|√
4π (r0 + η − η0)2

.

As dictated by the LL-brane dynamics [11] each of the two LL-branes lo-
cates itself on one of the two common horizons at η = ±η0 between “left”
and “middle”, and between “middle” and “right” “universes”, respectively.

The matching relations for the discontinuities of the metric and gauge field
components across the each of the two LL-brane world-volumes determine
all parameters of the wormhole solutions as functions of ±q (the opposite
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LL-brane charges) and f0 (coupling constant of
√
−F 2). Most importantly

we obtain:

Q = 0 , |cF | = |q|+ f0√
2
, (33)

and the bare cosmological constant must be in the interval:

Λ0 ≤ 0 , |Λ0| < 2π(f2
0 − 2q2) → |q| < f0√

2
, (34)

in particular, Λ0 could be zero.

Similarly to the charge-“hiding” case, relations (33) meaning:

|E⃗|middle universe = |q|+ |E⃗|left/right universe ,

have profound consequences:

• The “left-most” (29) and “right-most” (32) non-compact “universes”
become two identical copies of the electrically neutral exterior region of
Schwarzschild-de-Sitter black hole beyond the Schwarzschild horizon.
They both carry a constant vacuum radial electric field with magni-

tude |E⃗| = f0√
2
pointing inbound towards the horizon in one of these

“universes” and pointing outbound w.r.t. the horizon in the second

“universe”. The corresponding electric displacement field D⃗ = 0, so

there is no electric flux there (recall D⃗ =
(
1− f0√

2|E⃗|

)
E⃗).

• The whole electric flux produced by the two charged LL-branes with
opposite charges ±q at the boundaries of the above non-compact “uni-
verses” is confined within the “tube-like” middle “universe” (31) of
Levi-Civita-Robinson-Bertotti type with geometry dS2 × S2, where

the constant electric field is |E⃗| = f0√
2
+ |q| with associated non-zero

electric displacement field |D⃗| = |q| . This is QCD-like confinement.

A simple visualization of the charge-confining wormhole geometry is given
in Fig.2.

5. R2-Gravity Coupled to Confining Nonlinear Gauge Field
and Dilaton

Consider now coupling of f(R) = R + αR2 gravity (possibly with a bare
cosmological constant Λ0) to a “dilaton” ϕ and the nonlinear gauge field
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Figure 2: Shape of t = const and θ = π
2 slice of charge-confining wormhole

geometry: the whole electric flux produced by the two oppositely charged
LL-branes is confined within the middle finite-extent cylindric tube between
the “throats”.

system containing
√
−F 2:

S =

∫
d4x

√
−g

[ 1

16π

(
f(R(g,Γ))− 2Λ0

)
+ L(F 2(g)) + LD(ϕ, g)

]
, (35)

f(R(g,Γ)) = R(g,Γ) + αR2(g,Γ) , R(g,Γ) = Rµν(Γ)g
µν , (36)

L(F 2(g)) = − 1

4e2
F 2(g)− f0

2

√
−F 2(g) , (37)

F 2(g) ≡ FκλFµνg
κµgλν , Fµν = ∂µAν − ∂νAµ , (38)

LD(ϕ, g) = −1

2
gµν∂µϕ∂νϕ− V (ϕ). (39)

Rµν(Γ) is the Ricci curvature in the first order (Palatini) formalism, i.e., the
spacetime metric gµν and the affine connection Γµ

νλ are a priori independent
variables.

The equations of motion resulting from the action (35) read:

Rµν(Γ) =
1

f ′
R

[
8πTµν +

1

2
f(R(g,Γ))gµν

]
, f ′

R ≡ df(R)

dR
= 1 + 2αR(g,Γ) ,

(40)
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∇λ

(√
−gf ′

Rg
µν
)
= 0 , (41)

∂ν

(√
−g

[
1/e2 − f0√

−F 2(g)

]
Fκλg

µκgνλ
)
= 0 . (42)

The total energy-momentum tensor is given by:

Tµν =
[
L(F 2(g)) + LD(ϕ, g)−

1

8π
Λ0

]
gµν

+
(
1/e2 − f0√

−F 2(g)

)
FµκFνλg

κλ + ∂µϕ∂νϕ . (43)

Eq.(41) leads to the relation ∇λ (f
′
Rgµν) = 0 and thus it implies transition

to the “physical” Einstein-frame metrics hµν via conformal rescaling of the
original metric gµν [12]:

gµν =
1

f ′
R

hµν , Γµ
νλ =

1

2
hµκ (∂νhλκ + ∂λhνκ − ∂κhνλ) . (44)

Using (44) the R2-gravity equations of motion (40) can be rewritten in the
form of standard Einstein equations:

Rµ
ν (h) = 8π

(
Teff

µ
ν (h)−

1

2
δµνTeff

λ
λ(h)

)
(45)

with effective energy-momentum tensor of the following form:

Teffµν(h) = hµνLeff(h)− 2
∂Leff

∂hµν
. (46)

The effective Einstein-frame matter Lagrangian reads (the dilaton kinetic
term X(ϕ, h) ≡ −1

2h
µν∂µϕ∂nϕ will be ignored in the sequel):

Leff(h) = − 1

4e2eff(ϕ)
F 2(h)− 1

2
feff(ϕ)

√
−F 2(h)

+
X(ϕ, h)(1 + 16παX(ϕ, h))− V (ϕ)− Λ0/8π

1 + 8α (8πV (ϕ) + Λ0)
(47)

with the following dynamical ϕ-dependent couplings:

1

e2eff(ϕ)
=

1

e2
+

16παf2
0

1 + 8α (8πV (ϕ) + Λ0)
, (48)

feff(ϕ) = f0
1 + 32παX(ϕ, h)

1 + 8α (8πV (ϕ) + Λ0)
. (49)
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Thus, all equations of motion of the original R2-gravity system (35)–(39)
can be equivalently derived from the following Einstein/nonlinear-gauge-
field/dilaton action:

Seff =

∫
d4x

√
−h

[R(h)

16π
+ Leff(h)

]
, (50)

where R(h) is the standard Ricci scalar of the metric hµν and Leff(h) is as
in (47).

Important observation. Even if ordinary kinetic Maxwell term −1
4F

2 is

absent in the original system (e2 → ∞ in (37)), such term is nevertheless
dynamically generated in the Einstein-frame action (47)–(50), which is a

combined effect of αR2 and −f0
2

√
−F 2:

Smaxwell = −4παf2
0

∫
d4x

√
−h

FκλFµνh
κµhλν

1 + 8α (8πV (ϕ) + Λ0)
. (51)

In what follows we consider constant “dilaton” ϕ extremizing the effective
Lagrangian (47):

Leff = − 1

4e2eff(ϕ)
F 2(h)− 1

2
feff(ϕ)

√
−F 2(h)− Veff(ϕ), (52)

Veff(ϕ) =
V (ϕ) + Λ0

8π

1 + 8α (8πV (ϕ) + Λ0)
, feff(ϕ) =

f0
1 + 8α (8πV (ϕ) + Λ0)

, (53)

1

e2eff(ϕ)
=

1

e2
+

16παf2
0

1 + 8α (8πV (ϕ) + Λ0)
. (54)

Important observation. The dynamical couplings and effective poten-
tial are extremized simultaneously – this is an explicit realization of “least
coupling principle” of Damour-Polyakov [13]:

∂feff
∂ϕ

= −64παf0
∂Veff

∂ϕ
,

∂

∂ϕ

1

e2eff
= −(32παf0)

2∂Veff

∂ϕ
→ ∂Leff

∂ϕ
∼ ∂Veff

∂ϕ
.

(55)
Therefore at the extremum of Leff (52) ϕ must satisfy:

∂Veff

∂ϕ
=

V ′(ϕ)

[1 + 8α (κ2V (ϕ) + Λ0)]
2 = 0 . (56)

There are two generic cases:

(a) Confining phase: Eq.(56) is satisfied for some finite-value ϕ0 extremizing
the original potential V (ϕ): V ′(ϕ0) = 0.
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(b) Deconfinement phase: For polynomial or exponentially growing original
V (ϕ), so that V (ϕ) → ∞ when ϕ → ∞, we have:

∂Veff

∂ϕ
→ 0 , Veff(ϕ) →

1

64πα
= const when ϕ → ∞ , (57)

i.e., for sufficiently large values of ϕ we find a “flat region” in Veff . This “flat
region” triggers a transition from confining to deconfinement dynamics.

Namely, in the “flat-region” case (V (ϕ) → ∞) we have from (53)–(54):

feff → 0 , e2eff → e2 (58)

and the effective gauge field Lagrangian (52) reduces to the ordinary non-

confining one (the “square-root” term
√
−F 2 vanishes):

L
(0)
eff = − 1

4e2
F 2(h)− 1

64πα
(59)

with an induced cosmological constant Λeff = 1/8α, which is completely
independent of the bare cosmological constant Λ0.

Within the physical “Einstein”-frame in the confining phase (V ′(ϕ0) =
0 , ϕ0 = finite) we find:

(A) Reissner-Nordström-(anti-)de-Sitter type black holes, in particular,
non-standard Reissner-Nordström type with non-flat “hedgehog” asymp-
totics, generalizing solutions (6)–(8) in the ordinary Einstein-gravity case,
where now the effective cosmological constant and the vacuum constant
radial electric field read:

Λeff(ϕ0) =
Λ0 + 8πV (ϕ0) + 2πe2f2

0

1 + 8α
(
Λ0 + 8πV (ϕ0) + 2πe2f2

0

) , (60)

|E⃗vac| =
( 1

e2
+

16παf2
0

1 + 8α (8πV (ϕ0) + Λ0)

)−1 f0/
√
2

1 + 8α (8πV (ϕ0) + Λ0)
. (61)

(B) Levi-Civita-Bertotti-Robinson type “tubelike” spacetimes with geome-
tries AdS2×S2, Rind2×S2 and dS2×S2 generalizing (9)–(13), where now
(using short-hand notation Λ(ϕ0) ≡ 8πV (ϕ0) + Λ0):

1

r20
=

4π

1 + 8αΛ(ϕ0)

[(
1 + 8α

(
Λ(ϕ0) + 2πf2

0

))
E⃗2 +

1

4π
Λ(ϕ0)

]
. (62)

6. Discussion

Inclusion of the non-standard nonlinear “square-root” gauge field term pro-
vides explicit realization of the old “classic” idea of ‘t Hooft [9] about the
nature of low-energy confinement dynamics. Coupling of nonlinear gauge
theory containing

√
−F 2 to gravity (Einstein or f(R) = R+αR2 plus scalar

“dilaton”) leads to a variety of remarkable effects:
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• Dynamical effective gauge couplings and dynamical induced cosmo-
logical constant;

• New non-standard black hole solutions of Reissner-Nordström-(anti-
)de-Sitter type carrying an additional constant vacuum electric field,
in particular, non-standard Reissner-Nordström type black holes with
asymptotically non-flat “hedgehog” [6] behavior;

• “Cornell”-type [10] confining potential in charged test particle dynam-
ics;

• Coupling to a charged lightlike brane produces a charge-“hiding” worm-
hole, where a genuinely charged matter source is detected as electri-
cally neutral by an external observer;

• Coupling to two oppositely charged lightlike brane sources produces
a two-“throat” wormhole displaying a genuine QCD-like charge con-
finement.

• When coupled to f(R) = R + αR2 gravity plus scalar “dilaton”,

the
√
−F 2 term triggers a transition from confining to deconfinement

phase. Standard Maxwell kinetic term for the gauge field is dynami-
cally generated even when absent in the original “bare” theory. The
above are cumulative effects produced by the simultaneous presence
of αR2 and

√
−F 2 terms.

Let us conclude with a brief remark concerning the thermodynamic proper-
ties of the non-standard black hole solutions described above. To this end,
let us recall that for any static spherically symmetric metric of the form
(6) with Schwarzschild-type horizon r0, i.e., A(r0) = 0 , ∂rA|r0> 0, the so

called surface gravity κ proportional to Hawking temperature Th (e.g. [14],
Ch. 12.5) is given by κ = 2πTh = 1

2∂rA|r0 . With A(r) of the general form

A(r) = 1 − c(Qi) − 2m/r + A1(r;Qi), where Qi are the rest of the black
hole parameters apart from the mass m, and c(Qi) is generically a non-
zero constant as in (7) (responsible for the “hedgehog” non-flat spacetime
asymptotics), one can straightforwardly derive the first law of black hole
thermodynamics for the above class of solutions:

δm =
1

8π
κδAH + Φ̃iδQi , AH = 4πr20 , Φ̃i =

r0
2

∂

∂Qi

(
A1(r0;Qi)− c(Qi)

)
.

(63)
In the special case of non-standard Reissner-Nordström-(anti-)de-Sitter type
black holes (6)–(7) with parameters (m,Q) the conjugate potential in (63):

Φ̃ =
√
4π

( Q√
4πr0

− f0√
2
r0

)
=

√
4πA0 |r=r0

(64)

is (up to a constant factor) the electric field potential of the nonlinear gauge
system on the horizon.
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